—quikLoader

USERS AND
PROGRAMMERS
MANUAL

NOTE- The information on

programming contained herein is for
advanced uses. For most pro-
gramming needs, use the
PROGRAMMERS AID program,
packed with the quikLoader.

SOUTHERN CALIFORNIA

RESEARCH GROUP
Post Office Box 593
Moorpark, CA 93020

Telephone (805) 529-2082

The quikLoader“‘ is covered under Southern California Research
Group's ten day trial period. If you have purchased this unit directly from S.C.R.G.,
you may return it within 10 days if not satisfied with its performance. Contact your
dealer if this unit was purchased from a dealer.

This unit is also covered under our six month warranty. If the unit fails to function
within that time, return it, together with dated proof of purchase, to us. We will, at
our option, repair or replace the unit.

The disclaimer below is required as part of our license agreement with
APPLE COMPUTER, INC.

APPLE COMPUTER, INC makes no warranties,
either express or implied, regarding the enclosed
computer software package, its merchantability, or its
fitness for any particular purpose. The exclusion of
implied warranties is not permitted by some states. The
above exclusion may not apply to Kou. This warranty
provides you with specific legal rights. There may be
other rights that you may have which vary from state to
state.

DOS, INTEGER, FID, and COPYA are copyrighted programs of APPLE

COMPUTER, INC. licensed to Southern California Research Group to distribute for
use only in combination with quikLoader.

The quikLoader was designed by Jim Sather. The
quikLoader operating system was written by Jim Sather.
Entire contents copyright 1984, 1985, and 1986 by Jim
Sather and Southern California Research Group.

quikLoader INSTRUCTIONS

The quikLoader is a firmware peripheral card designed for use
in the Apple][, Apple][Plus, and Apple //e computers. It will
hold up to 512K (524288) bytes of data and programs. Because the
data and programs are stored in EPROM, they are instantly
available to the computer operator at any time.

The quikLoader provides the user an unprecedented level of
speed and convenience in accessing the programs he uses most
often. Many valuable programs are rarely used by their owners
because of the inconvenience of locating the correct diskette and
loading the programs. Whatever the value of a program to you, it
will become more valuable if you install it on the quikLoader.

The quikLoader is supplied with several programs resident:
QLOS (the QuikLoader Operating System), DOS 3.3, Integer BASIC,
FID, COPYA, and a QLOS help screen generator. DOS, Integer, FID,
and COPYA are programs from the Apple DOS master disk and are
distributed under license from Apple Computer, Inc. QLOS is a
program written for the quikLoader which supports a variety of
operational features including immediate availability of DOS and
Integer at power-up, loading RAM and running of Applesoft,
Integer, or Binary files, execution of quikLoader resident primary
routines, Katalogging (as opposed to disk catalogging) of QLOS
files, and execution of a number of reset functions selected via
the keyboard.

ROM Select Jumpers

Before installing your quikLoader in your Apple, take a
moment to examine it visually. There are eight ROM/EPROM sockets,
each of which can hold a 2716 (2K byte), 2732 (4K), 2764 (8K),
27128 (16K), 27256 (32K), or 27512 (64K) EPROM or equivalent
masked ROM. There are four solder pad jumpers associated with
each socket, two split circle pads, a "bow tie", and a straight
conducter. These pads must be changed for a socket if you elect
to install a 24 pin chip (2716 or 2732) in it, or a 28 pin 27512.
When configuring these jumpers for a socket, there is always
electrical contact across one jumper or the other. Here are the
possible confiqurations: -

BOW TIE LOWER SPLIT CIRCLE IC TYPES
MADE DESOLDERED 2764, 128, 256, and 512
CUT SOLDERED 2716, 2732, 2764

In addition, to use the 27512, it is necessary to cut the
trace (inside the white square) and bridge the upper split circle.
Directions for doing all these operations are on the back of the
quikLoader.

The quikLoader is delivered with all sockets (except zero)
configured for 2764/27128/27256. Please note that 2764 will work
with either jumper configuration. Also notice that when 24 pin
ICs are installed in the 28 pin quikLoader sockets, they are
installed in the lower 24 pins.

For Chip zero only, you are limited to using the 27256 or
27512 EPROMS. The card is configured for using the 27256. Make

1

the above mentioned changes for using the 27512.
quikLoader Chains; DMA IN / DMA OUT Jumpers

The DMA IN and DMA OUT jumpers are located near the edge
connector of the quikLoader. These need to be soldered when more
than one quikLoader is used in a given Apple. The quikLoader
hardware and QLOS support katalogging, running, and loading of
files in such multiple configurations as long as the quikLoaders
are part of a continuous chain of cards. For example, you can
have one quikLoader in slot 2, two unassociated cards in slots 3
and 4, and quikLoaders in slots 5 and 6. This would give the user
instaneous access to up to 768K bytes of data and programs. The
unassociated cards in the chain must have pins 27 (DMA IN) and 24
(DMA OUT) jumpered together. This is because the DMA IN/OUT
priority chain is used prioritize the quikLoaders with the highest
priority quikLoader in the lowest numbered slot. The following
rules should be observed when installing more than one quikLoader
in an Apple:

1. no empty slots between quikLoaders.

2. All unassociated cards between quikLoaders have pin 27
jumpered to 24.

3. DMA IN must be soldered on all but highest priority
(lowest slot) quikLoader.

4. DMA OUT must be soldered on all but lowest priority
(highest slot) quikLoader.

5. No DMA cards can be in the quikLoader chain. This in-
cludes alternate MPU cards (e.g. %80 cards), DMA based
manual controllers like SCRG's D MAnual Controller, and
DMA based I/0 controllers. DMA cards should be outside
of the quikLoader chain and isolated from it by an empty
slot or by desoldering the highest priority DMA IN jumper
or the lowest priority DMA OUT jumper, whichever is appro-
priate. Note that DMA cards can be installed in an Apple ~
with a quikLoader. They just cannot be installed within a
chain of two or more quikLoaders.

6. The Applesoft and Integer 12K firmware cards also use the
DMA IN/OUT chain to prioritize multiple firmware card con-
figurations. QLOS does not support a mixed chain of 12K
firmware cards and quikLoaders, so 12K firmware cards
should be isolated from quikLoader chains just as DMA cards

(quikLoader ON/OFF switch)

Some cards and software are incompatible with the presence of
the quikLoader. We have included an method of turning off the
quikLoader via an external switch. If you look on the front of
the quikLoader, between the 74S74 and the 74LS174, you will see
two unmarked solder pads. Turning the card on its back, you will
see a "bow-tie" to the left of these pads. To install the switch,
cut the bow tie, and solder two wires to the pads. These wires
should go to a SPST (Single Pole, Single throw) switch. If your
software or hardware does not appear to work with the quikLoader
plugged in, you may turn off the card for as long as necessary.
The card can be turned on or off without turning off the computer,
but you will have to remember, in most cases, to do a Z-RESET
after turning the card on.

Operation
Some Basic Hardware Features

There are sockets for eight ROM chips on the quikLoader
referred to as chip 0 through chip 7. When the quikLoader is
enabled, one of these eight chips is selected for response to
addressing in the $C100-$FFFF range and motherboard response to
this range is inhibited. Any time an Apple reset occurs -- when
RESET is pressed, at power up, or when a peripheral card pulls
RESET' low -- the quikLoader is enabled with chip 0 selected.
The result is that an Apple reset will always cause the Apple's
6502 MPU (Micro Processing Unit) to start executing a program
stored in chip 0 of the highest priority quikLoader. The program
that the 6502 executes is QLOS.

The action QLOS takes at reset depends on the key which
the operator last pressed or is pressing, and the state of the
power-up byte ($3F4) as compared to the high byte of the Autostart
soft reset vector ($3F3). By pressing the desired key
concurrently with CTRL-RESET the operator can select from a
variety of resets such as normal reset, forced power up, forced
disk boot, quikLoader katalog, executing programs on chips, etc.
After QLOS processing, the quikLoader is disabled and motherboard
processing is renewed. B

Besides interpreting the keyboard at system reset, QLOS
performs many functions which make the quikLoader a usable device.
Knowledge of these functions is of no particular use to an
operator but is very useful to programmers.

The Power-up Reset.

QLOS interprets the power-up byte exactly as the Autostart
ROM does. If $3F4 contains the exclusive OR of $A5 and the
contents of $3F3, the Apple is considered to have previously
powered up. If $3F4 is not correctly set, a power-up reset is
performed. But the QLOS power-up reset is different from the
Autostart power up. Instead of booting the disk, QLOS performs
the power-up routine on chip 6 of the highest priority quikLoader.
In the absence of a chip in socket 6, the QLOS supplied with the
quikLoader wil do its power-up routine. This transfers Integer
BASIC to $SE000-SF7FF of high RAM, transfers the motherboard
monitor to $F800-$FFFF of high RAM, transfers DOS 3.3 to its
normal operating location in RAM, initializes DOS, and enters
Applesoft. This is all performed so fast that, for all purposes,
the Apple powers up with DOS and Integer instantly available.

The power-up routine may be changed by inserting a chip in
socket 6 with a special power-up routing (see the PROGRAMERS
AID). This means that the quikLoader can power up with any
application operating, and only data disks, not program disks,
need be resident in disk drives.

Resetting the Apple //e
In the Apple //e it is possible for a program to tell if a

key is being held down. QLOS uses this feature to force a normal
reset unless a key is held down while CTRL-RESET is pressed and

3

released. If no key is held or an undefined key is held while
RESET is pressed, the motherboard reset is performed (or the QLOS
power-up reset is performed if the power-up byte is bad).
Therefore, if you never hold a key down while you press and
release CTRL-RESET, the operation of the Apple //e will remain
unchanged with a quikLoader installed, except when the power-up
byte is not right.

To select one of the special resets, you must press the
desired key while pressing and releasing control reset. For
example, to katalog the quikLoader files, press CTRL and "Q" with
the left hand, press and release RESET, then release the CTRL and
"Q" keys. QLOS will wait until you have released "Q" before
performing the katalog.

Holding a key down overrides a bad power-up byte in the
Apple //e. for example, if you perform a Q-reset and the power-up
byte is bad, QLOS will fix the power-up byte and perform a
katalog, not a power-up reset.

The //e open Apple and solid Apple keys force disk boot
and diagnostic execution just as they do when quikLoader is not
installed. QLOS looks for these keys and immediately exits to the
motherboard reset handler if one of them is being held down.

Resetting the Apple][and Apple)[Plus

In the Apple][and][Plus, programs cannot test for "any
key down". As a result, QLOS interprets the last key pressed
before a reset to determine which selectable reset to perform.
This has advantages and disadvantages over //e operation. The
advantage is that you don't have to hold a key while you press
CTRL and RESET. To perform a Q-reset, you press "Q" and release
it, then you press and release RESET or CTRL-RESET as you normally
do with your Apple. The disadvantage is that you must get into
the habit of pressing "A" before RESET when you want a normal
motherboard reset. Otherwise, QLOS will possibly interpret the
last keypress as a reset selection you really didn't intend to
make. Quite often, this accidental selection will put you in the
monitor, simply because the ASCII for RETURN is identical to
CTRL-M, the monitor select key, and RETURN is often the last
previous operational keypress. The A-reset forces a motherboard
reset if the power-up byte is good and a QLOS power up if the
power-up byte is bad.

A second feature of][/][Plus operation is that a
keypress will not override a power-up reset if the power-up byte
is bad. This is necessary in the][and][Plus so the reset
which occurs at power up is not random. The one exception to this
rule is an M (no CTRL); CTRL-RESET. This is the sole reset which
overrides the power-up byte and causes an entry to the system
monitor. Because of the M-reset override, some Apple][s or][
Pluses may occasionally power up in the monitor. 1If this happens,
you may then perform a Z-reset (move Integer and monitor; move and
initilize DOS). If you experience the occasional monitor power up
and your application will not tolerate it, contact at (805)
529-2082 for consultation. The M-reset override is a compromise
which should give most owners maximum system usefulness. But the
feature can be deleted from QLOS if necessary.

The Selectable Resets

A list of selectable QLOS resets follows. Where possible,
the keys were selected to help you remember the selected function
(such as D for disk boot). In other instances, the keys were
selected for proximity to the CTRL key. This minimizes the
dexterity required to select a reset. Following this short list
is a more detailed description of each reset type.

KEYBOARD RESET COMMANDS

72 - Move Integer, monitor, and DOS to RAM; initialize DOS; enter
FP.

n - (number 0-7) Do routine on chip n.

Q - quikLoader katalog.

H - "Z-reset" then execute HELLO.

B - (boot only) Move DOS to RAM; initialize DOS; enter Applesoft.
D - Disk boot.

C - Catalog the disk.

M - Enter monitor (ditto RETURN).

S - Soft reset (slot 0 16K RAM card reset).

X - Go to mini assembler.

A-reset

Vector to contents of SFFFC/S$FFFD on motherboard if power-up byte
is good. Perform power-up routine on chip 6 if power-up byte is
bad. Undefined key causes A-reset.

Z-reset
Move Integer BASIC, motherboard monitor, and DOS to their normal
RAM locations. Initialize DOS and enter Applesoft.

n-reset

Press a number, n, between zero and seven in conjunction with
RESET to perform the n-reset primary routine of chip n on the
highest priority quikLoader. The primary routine which will be
executed on a given chip is identified by an inverse "P" in its
katalog display. An n-reset to a socket with no chip installed
causes unpredictable results. If you accidently do this, simply
reset the system again, selecting the reset type you desire.
Chips with no n-reset routine can be programmed so n-reset will
fall through to the same chip number on the second highest
priority quikLoader. The chip 0 supplied with the quikLoader has
the program COPYA as its n-reset function.

An n-reset is not the only way to execute a program. It is a very
easy way to run a single high priority program on each chip. Most
programs will be run via the Q-reset and up to 256 programs may be
katalogged, loaded, and/or run using the Q-reset.

Q-reset
quikLoader katalog, load, and run. Please see the following
section, "quikLoader Katalog (Q-reset)".

H-reset :

Perform the functions of the Z-reset then execute a program on a
disk named HELLO (slot 6, drive 1). Note that this is not the
same as executing a DOS hello program. The DOS hello program is a
special program whose name is selected at disk initialization.

Its name is usually HELLO, and the H-reset is a convenient way of
executing this program when it is named HELLO.

5

B-reset

Boot only. Move and initialize DOS and enter Applesoft. This is
like a Z-reset except Integer and the monitor are not transferred
to RAM.

D-reset

Force a disk boot. The D-reset clobbers the power-up byte then
enters the motherboard reset handler. This will force a disk boot
if the Autostart ROM is resident on the motherboard. This gives
the capability of overriding software which hangs the Apple via
the soft reset vector. It is similar to the open Apple reset of
the Apple //e, but it does not systematically modify RAM as the
open Apple reset does.

C-reset

Catalog the last accessed disk. This is a convenient way to evade
typing the most often entered command in the Apple repertoire. It
does not transfer and initialize DOS so DOS must be resident if
C-reset is to work. After catalogging, the last active BASIC is
reentered without destroying any resident BASIC program.

M-reset

Enter monitor. RETURN-reset also forces monitor entry. M (no
CTRL) reset is the only selectable reset that will override a bad
power-up byte in the Apple][or Apple][Plus. The M-reset
disconnects DOS and sets up the screen display and keyboard as
primary output and input. For this reason, M-reset is
undefeatable from software. Perform an A-reset to reconnect DOS.

S-reset

Soft reset causes execution of the slot 0 16K RAM card reset
handler in the Apple][and Apple][Plus. This will enable
Pascal and CP/M users to perform the soft reset required by these
systems. This is necessary because the modification to the RAM
card, required for operation with quikLoader, causes the RAM card
to be disabled when RESET is pressed.

S-reset does not cause a vector to the reset handler of the
built-in 16K RAM card of the Apple //e. This is because QLOS goes
to the RAM card via a "JMP ($FFFC)" stored in page 1 of memory.

It is a feature of the Apple //e that a "JMP ($FFFC)" executed
from page 1 disables the built-in RAM card for reading. This
secret feature was discovered during the debugging of QLOS. It
doesn't particularly harm quikLoader operation, because the
S-reset is only designed to regain a capability which was taken
away from Apple][and][Plus users by the RAM card modification.

X-reset

Transfer Integer BASIC and the motherboartd monitor to high RAM
and enter the mini assembler with high RAM enabled for reading and
writing. The mini assembler is one of the nicer features of the
Apple. X-reset will get you there in a hurry.

quikLoader Katalog (Q-reset)

The Q-reset is the primary means by which various QLOS
programs are selected and run. QLOS katalogging is similar to
disk catalogging, but it is faster and more versatile. The
katalog can be scrolled forwards and backwards if the number of
entries exceeds the size of the screen. Programs are selected and

run by pressing a single key. Coupled with virtually
instantaneous data transfer, this leads to a level of convenience
and utility unknown to Apple users before the developement of the
quikLoader and QLOS.

QLOS File Types

QLOS supports loading and/or running of four types of
files. These are:

A files --- Applesoft files
B files --- Binary files

1 files --- Integer files

P files --- Primary routines.

The A, B, and I files are just like A, B, and I DOS files. It is
quite easy to take A, B, and 1 DOS files, store them consecutively
in an EPROM buffer, add a QLOS format katalog record, and burn an
EPROM with your own choice of A, B, and I files instantly
available via the Q-reset.

The A, B, and I files are all transferred to RAM for
running. A files are transferred to low memory, and I files are
transferred to high memory just as if they were loaded from a
disk. The B files are loaded to an address specified in the
katalog entry for that file. There is no provision in QLOS for
specifying alternate RAM destinations for B files.

The P files are unique to QLOS. They are files which are
actually run while resident in the quikLoader and will be referred
as primary routines. The object of primary routines is to
transfer combinations of programs and data to RAM for
initialization and execution. For example, COPYA is an Applesoft
program which normally "BLOADS" COPY.OBJ from a disk. It is
implemented in the quikLoader as a primary routine which transfers
the COPY.OBJ program to RAM, transfers COPYA to RAM, and runs
COPYA. Similarly, any programming application which requires
operations more complex than running or loading of a single A, B,
or I file would have to be implemented via a primary routine.

If you use the PROGRAMMERS AID to program your EPROMS, all
programs will show as P files.

A B S1 CO FID

B P S1 CO COPYA

C A S1 CO QUIK LOADER/QLOS HELP
D

v

w

The Katalog Display
Performing a Q-reset with a quikLoader installed in your

Apple results in a screen display showing the quikLoader resident
files. The above figure shows the katalog display of a standard

7

quikLoader. In addition to the name of each file, the dispiay
shows a selection index, a file identifier, and the slot and chip
number of where each file resides. Also, by pressing Z, you can
display the source, length, and destination parameters for each
file.

On the far left side of the katalog display are the letters
"A" through "W" in a single column. These letters are the file
selection indices for the katalogged files. For example, the name
COPYA is next to the letter "B". If you press "B" on the keyboard,
you will run the primary routine, COPYA. Similarly, any program
the katalog display can be run by pressing its index letter.

In addition to the letters A-W, other keys perform special
functions as follows:

ESC Escape from katalog to BASIC.

Y Cause loading instead of running. After pressing Y,
pressing the index letter for an A, B, or I file will cause
the program to be transferred from the quikLoader to RAM,
but not run.

Z Toggle the parameter display. This enables the display of
source, length, and destination information as an aid for
persons programming QLOS compatible PROMS. When the
parameter display is on, the file names are truncated to
nine characters instead of their normal 29. The source
parameter is the base address of an A, B, or I file or the
primary routine in quikLoader. The length parameter is the
length of A, B, or I files. The destination parameter is
the destination in RAM of B files. The length parameter is
meaningless for primary routines, and the destination
parameter is meaningless for A files, I files, and primary
routines.

Scrolling (left arrow, right arrow, and space) %

If the number of quikLoader files exceeds 23, then only the
first 23 files will be displayed after a Q-reset. In this
instance, you must scroll the katalog display to gain access to
files not on the current display. Press right arrow to scroll
forward one file. Press left arrow to scroll backwards one file.
Press space for continuous scrolling in the direction of the last
arrow press. Press right or left arrow to stop the continous
scrolling and set the direction.

When scrolling forward, the display will scroll to the last
file then stop. When scrolling backward, the display wraps around
from file 0 to file 255. 1If, as normal, there are less than 233
katalog entries, this will cause the screen to go blank. If you
find yourself with a blank screen and wish to get rid of it, press
right arrow, then space. After a short while the display will
reappear.

The maximum number of katalog entries which can be
displayed and selected by QLOS is 256. After entry number 255 is
printed to the screen, the display wraps around to entry number O.
If you exceed 256 entries, there will be no way to access the extra
files.

Programming QLOS Compatible EPROMs

NOTE - FOR MOST PURPOSES, PROGRAMMING SHOULD BE DONE BY USING THE
PROGRAMMERS AID. THIS SECTION IS INCLUDED FOR VERY SPECIALIZED
USES, AND REQUIRES SOME PROGRAMMING ABILITY.

QLOS compatible EPROMs are filled primarily with programs
and data, packed in tightly with no space between them.
Additionally, QLOS EPROMs have a certain amount of chip overhead.
Chip overhead is data which is not part of the usable QLOS files,
but is present to support QLOS formats. This overhead includes a
katalog record and some other data which is required for QLOS
operation.

If a chip has no primary routines, its overhead beyond the
katalog record is very minimal and straightforward. This means
you can easily learn to grogram QLOS EPROMs with any number of
Applesoft, Integer, or binary programs available for transfer and
execution. Programming Erimary routines is more complex. There
are several possible variations of overhead requirements, and more
knowledge of QLOS and quikLoader structure is required. Primary
routines aren't particularly difficult to write, but writing
primary routines is more difficult than packing A, B, and I files
together with a katalog record.

EPROM

EPROM stands for Erasable Programmable Read Only Memory.
It is non-volatile, which means that, like masked ROM, the data in
EPROM cannot be altered in the course of normal operation. When
your data is in EPROM, it is always available, just as the BASIC
and monitor in ROM are always available in the Apple. Unlike ROM,
however, EPROM can be erased and reprogrammed. =

The acronym EPROM is used to refer to ultraviolet light
erasable PROM. This UVEPROM has been in use for years, and is the
type of EPROM you will probably use in the quikLoader. UVEPROM
has a little transparent window in the top. Shining light from a
short-wave ultraviolet lamp through the window will erase a
UVEPROM in about 20 minutes. A small UVEPROM eraser with a timer
can be purchased for approximately $50.

CAUTION - Short-wave ultraviolet radiation can be harmful. Be
sure to use erasers with adaquate shielding.

A second type of EPROM is EEPROM (Electrically Erasable
PROM). EEPROM is pin compatible with UVEPROM and can be used in
the quikLoader. EEPROM is a much more recent developement,
though, and UVEPROM is less expensive and in more common usage
than EEPROM.

EPROMs and ROM which can be used in the quikLoader are
compatible with the Intel 27nn series. These include

12716 2K bytes / 16K bits
2732 4K bytes / 32K bits
127648 BK bytes / 64K bits
27128 / 128K bits
/
i

256K bits
512K bits.

¢ 16K bytes
27256 g 32K bytes
27512 @ 64K bytes

9

You can program any of these sizes of chips for the quikLoader, and
programs you puchase for the quikLoader may come on any of these
sizes of chips. Size, cost, and availability will enter into
consideration when deciding which type of chip to enter your
programs on. At this writing (March, '85) 27256s are the least
cost per bit. Using anything smaller then this is wasteful of the
quikLoader. Prices of the 27512 are expected to further decrease.
As this occurs, you will be able store larger amounts of data on
the quikLoader while remaining solvent.

To program EPROM, you need an EPROM burner. This is a
device which will program EPROMs from a source file in some sort
of computer. PROM burners exist which can be plugged into an
Apple, and this is probably the type you will want to use for
quikLoader EPROMs since you will burning Apple files into EPROM.
It will be desireable for your PROM burner to be capable of
burning 2764, 27128, 27256 and 27512 EPROMs. The quikLoader can
utilize the smaller 2716 and 2732 EPROMS, but these EPROMs reduce
the capacity of the quikLoader. Remember that one 27128 holds the
same amount of data as eight 2716s or four 2732s.

PROM burners of various sorts can be purchased from
electronics stores and computers. Southern California Research
Group has developed an inexpensive PROM burner that will burn 27nn
series EPROMS up to 27512s. This PROM burner is available throug
dealers, or direct from SCRG.

quikLoader Addressing Ranges

The quikLoader addressing range is from $C100 to SFFFF.
This is a range of 128K bytes minus 256. The addressing ranges
used for the smaller chips are the high portions of the quikLoader
range. This is strictly a QLOS convention since the quikLoader
hardware will let you address the smaller chips at more than one
range. For example, a 6502 program can access the data in a 2732
at SF000-SFFFF, SE000-SEFFF, $D000-$DFFF, or $C100-$CFFF. QLOS,
however, will only access 2732 data at $F000-SFFFF.

You may have noticed that the $C100-$FFFF range does not
allow access to the bottom 256 bytes of data in a 27128 or 27256.
This 256 bytes is not usable for storage of A, B, or I files or
the katalog record. It is usable for storage of data accessed by
primary routines using techniques described under "27128/27256
Programming Considerations”. For EPROMs with no primary routines,
the maximum amount of accessible data at a single socket is less
than 16K bytes (16384 - 256 = 16128 usable bytes). For 27256s,
only one bank is available for A, B, and I files and the katalog
record. Therefore, 27256s are only practical when they contain at
least one primary routine.

The Katalog Record

The katalog record of a QLOS EPROM is made up of
individual katalog entries, stored sequentially starting at some
base address. The base address of the katalog record of a QLOS
EPROM must be stored at $FFFB and $FFF9 of the EPROM. If there is
no katalog record on a QLOS EPROM, this must be identified by the
value SFFFF or a value less than $C100 at $FFF8 and $FFF9. (It is
possible that an EPROM will have no katalog record if it contains
only data which is accessed by a primary routine on a different
chip.)

10

the katalog screen display.
about 20 bytes,

Figure 2 shows the format of the katalog record and Figure
3 shows the format of a single entry in a katalog record. The
entry contains a file identifier, source/length/destination
parameters, and ASCII for the name of the file as it appears on

A typical katalog entry takes up
so an EPROM with 10 QLOS files would require about

200 bytes for the katalog record, depending on the length of the
file names.

ID SLO SHI
ID SLO SHI
ID SLO SHI

ID SLO SHI
$86

LLO LHI
LLO LHI
LLO LHI

LLO LHI

DLO DHI
DLO DHI
DLO DHI

DLO DHI

NAME
NAME
NAME

NAME

$86 (CONTROL-F) TERMINATES KATALOG RECORD

Figure 2 - The Katalog Record Format

ID SLO SHI LLO LHI DLO DHI

=

File 1ID:

$81 (CTRL-A) =
$82 (CTRL-B) =
$89 (CTRL-I1) =
$90 (CTRL-P) =
$86 (CTRL-F) =

NAME

Destination of file in RAM.
meaningless in A, I, and P files.

Length of file.
meaningless in P files.

Source address of file in
quikLoader for A, B, and 1 files.

address of primary routine.

Applesoft program
Binary program
Integer program
Primary routine
Finish - terminate katalog record

Figure 3 - Katalog Entry Format

11

ASCII name of QLOS file:

All ASCII above $8F is valid. This includes numbers, upper case,
lower case, and special characters. It excludes control, inverse,
and flashing characters. Maximum name length is 29 characters.

The following codes are used in the "NAME" portion of the katalog i
file. For example, to have the letter "A" appear in the katalog
name, use a code of Cl:

char code char code char code char code char code

A C1l B Cc2 C C3 D c4 E C5
F (o] G Cc7 H (of:] I c9 J CA
K CB L CcC M CD N CE (o] CF
P DO Q D1 R D2 S D3 T D4
U D5 \' D6 W D7 X D8 Y D9 H
2 DA 0 BO 1 B1 2 B2 3 B3
4 B4 5 B5 6 B6 7 B7 8 B8
9 B9 H BA H BB < BC = BD
> BE ? BF ! Al s A2 A3
$ A4 L] A5 & A6 : A7 (A8
) A9 - AA + AB v AC - AD
. AE / AF (space) AO

Note - you may also use lower case, but it is not recommended :
since unmodified APPLE] [computers cannot display lower case.

Programming Examples

A REMINDER - USE THE PROGAMMERS AID WHERE POSSIBLE

There are two parts to a QLOS compatible EPROM, the data 5
files and an overhead file. The data files are packed together by
loading them sequentially from disks to a buffer area of RAM. The
overhead file is built separately and merged with the data files
in the buffer area. This merged file is saved to disk and loaded
to the EPROM burn buffer when it is time to burn an EPROM.

To pack the data files, it is necessary to find the
lengths and compute the starting address of the various files. A
"Texas Instruments Programmer®™ calculator is very helpful in :
computing the starting addresses. Programming Example 1
demonstrates how to find the lengths of A, B, and I files.

Building the overhead file should be done using a 6502
editor/assembler. It can be done by hand, but an assembler will
make the task much easier. Examples shown here were assembled
using Apple's "DOS TOOL KIT" editor/assembler. You do not have to
know 6502 assembly language programming to grasp these examples or
to use an assembler for similar purposes. Except for the primary
routines, no 6502 programming is required.

The general method of the examples is to pack the data
files starting at the low address of the EPROM being used ($C100
for 27128/27256, SE000 for 2764, $F000 for 2732, $F800 for 2716).
Overhead files start at $FF00, an arbitrary but convenient
starting place. This works out pretty well because parts of QLOS
overhead must be at high addresses.

12

Example 1
Making a QLOS compatible chip with no primary routines.

Objective
Place BOAT (1), SPLIT SCREEN (B), and GRID (A) on a QLOS formatted
2764 EPROM.

1. cCalculate file lengths and arrange files together.

LOAD BOAT from disk.

<CALL -151

*$CA, $CB = $9449; length of BOAT = $9600-$9449 = $1B7
BSAVE BOATB,A$9449,L$1B7 s

BLOAD SPLIT SCREEN from disk.
*SAA72, $AA73 = $1F00 SPLIT SCREEN destination
*$SAA60, S$AA61 = SO03E SPLIT SCREEN length

non

LOAD GRID from disk.

JCALL -151

*$69, $6A = $0B7F; length of GRID = $87F-$801 = STE
BSAVE GRIDB,A$801,LS$7E

start BOAT at address $E000 (arbitrary)
BOAT resides at $E000-SE1B6

SPLIT SCREEN resides at $E1B7-$SEl1F4
GRID resides at $E1F5-$E272

BLOAD BOATB,A$2000

BLOAD SPLIT SCREEN,A$21B7

BLOAD GRIDB,A$21F5

BSAVE BT.SPSCRN.GRD,A$2000,L$273

2. Bring up the DOS TOOL KIT editor.
BRUN EDASM.OBJ

Enter following text file:

ORG $FF00 START KATALOG RECORD AT $FF00
BOATK DFB $89 CONTROL-1 (INTEGER)

DW $E000 SOURCE

DW $01B7 LENGTH

DW $0000 MEANINGLESS DESTINATION

ASC 'BOAT' NAME
SPLTK DFB $82 CONTROL-B (BINARY)

DW $E1B7 SOURCE

DW $003E LENGTH

DW $1F00 DESTINATION

ASC 'SPLIT SCREEN'
GRIDK DFB $81 CONTROL-A (APPLESOFT)

DW SELFS SOURCE

DW S$SO007E LENGTH

DW $0000 MEANINGLESS DESTINATION

ASC 'GRID' NAME

DFB $86 CONTROL-F ENDS KATALOG RECORD
*
*

DS SFFEF-* SKIP TO $FFEF

LDA #3500 REQUIRED CODE MUST BEGIN AT $FFEF

NOP

13

STA $C081,X

DS 3
DW BOATK KATALOG POINTER AT $FFF8
DW $3FB NMI POINTER AT S$FFFA

:SAVE EXAMPLE 1 OVERHEAD
:ASM EXAMPLE 1 OVERHEAD
:END

3. Merge data blocks with chip overhead.
JCALL -151
*2000:FF
*2001<2000.3FFEM
*BLOAD BT.SPSCRN.GRD,A$2000
*BLOAD EXAMPLE 1 OVERHEAD.OBJO,AS$3F00
*BSAVE TEST,A$2000,L$2000

TEST is now a valid QLOS EPROM source file. BLOAD it to
your EPROM burn buffer and burn it on 2764 EPROM.

The programs in Example 1 are very short and will not fill
up an EPROM. This means that if you actually built this QLOS
EPROM, you would have a lot of room for future expansion.

EXAMPLE 1 OVERHEAD.OBJO in Example 1 is the chip overhead.
The portion beginning at $FFEF is top overhead, and the top
overhead of Example 1 is that required when a katalog record is
present but no primary routines are present. The "LDA #$00, NOP,
STA $C081,X" sequence will allow fall through to the second
priority quikLoader if an n-reset is performed to this chip.

Primary Routines

Primary routines must be written when an application can't
be implemented using straightforward A, B, or I files. Use
primary routines when:

1. a program is made up of more than one contiguous block of data.
2. a program exceeds the capacity of a single EPROM.
3. you wish an important program to be activated by n-reset.
4. you wish to utilize the first 256 bytes of a 27128 or 27256
EPROM.
5. you wish to make a program the power-up program in the event
the

host chip is installed in chip socket 6.

The primary routine is actually a 6502 program, so you
must be able to write 6502 assembly language programs if you want
to design applications around primary routines.

The general idea of a primary routine is to transfer
combinations of programs and data to RAM for execution. For
example, COPYA is a combination of an Applesoft program and a 6502
machine language program. The primary routine for COPYA first
transfers the machine language program, then transfers and
executes the Applesoft program. The primary routines are part of
the chip overhead, separate from the blocks of data which are
transferred to RAM.

During the course of primary routine execution, control
may be passed back and forth between the chip containing the

14

primary routine and chip 0 on the highest priority quikLoader.
Typically, chip 0 will initially call. the primary routine, then
the primary routine will make several calls to routines available
on chip 0, then the primary routine will exit to some address on
the motherboard via the chip 0 GO TO MOTHERBOARD routine.

The passing of control back and forth is done via bank
switching instructions at fixed locations in the top overhead.
"STA $C081,X" with slot number times $10 in the X-register
accomplishes the switching, and strict protocol must be followed
so program flow can proceed in an orderly way when one chip is
switched off and another is switched on.

The quikLoader configuration register receives the bottom
five bits of the accumulator when the "STA $C081,X" is executed.
Additionally, QLOS protocol calls for the number of the exited
chip to be in the top three bits of the accumulator. This results
in the following chip switching control word:

ABC,0,U,DEF

where ABC is the exited chip number
0 is the quikLoader ON/OFF flip-flop
U is the quikLoader USR flip-flop
DEF is the entered chip number.

This protocol makes it possible for QLOS to execute a subroutine
for a chip, then return to that chip.

A complete discourse on writing primary routines
encompasses several related subjects. Since the PROGRAMMERS AID
make learning all this unnecessary except in unusual cases, we have
not decided not to include this information in the manual.

However, if you need it, this information is available from us at
no charge. Please contact us. Our address is at the end of the
manual.

27256 Programming Considerations

The natural addressing range of a 27256 would be
$8000-$SFFFF, so the 27256 must be banked switched. 1t behaves 3
like two bank switched 27128s and all 27128 rules must be followed
with 27256s. The odd bank is selected by storing the accumulator
control word at $C081,X with slot number times $10 in the
X-register. The even bank is selected by the same storage
instruction with (slot number x $10) - 1 in the X-register.

QLOS only looks for A, B, and I files and the katalog
record in the odd bank. The even bank can be used only by primary
routines. The chip 0 transfer routines will use the even bank as
the transfer source if you perform a "DEC $26, DEC $27" before
calling chip 0. This will result in (slot number x $10) - 1 in
the X-register at transfer set up time. $26, $27, and the
X-register will be restored by QLOS upon return to the calling
chip. Note that only $26 and $27 were decremented before calling
chip 0. The X-register should always contain slot number x $10
when calling chip 0.

Example: LDX $26
DEC $26
DEC $27
JSR GOCHIPO

There is no QLOS top overhead requirement for the even
bank of 27256 chips. The even bank is never enabled unless a

5

primary routine switches to the even bank or unless a transfer
call to chip 0 is made after decrementing $26 and $27. Obviously,
27256s can only be used in connection with primary routines.

NOTE:

The 27256 even bank can also be enabled if the chip is in socket 0
of a lower priority quikLoader. See the discussion of GETSLOT
overhead in the next section.

27128/27256 Programming Considerations

When programming 27128s and 27256s, contingencies arise
which don't have to be taken into account with the smaller chips.
You need to be aware of these when programming the big chips. In
the following discussion, assume the natural addressing range of a
27128 or one bank of a 27256 is $CO00-SFFFF.

The first problem is with the GETSLOT overhead (see
programming Example 2). If you wish to use a 27128 or 27256 in
chip 0 of a lower priority quikLoader, you need to include the
GETSLOT overhead. But with a 27128 or 27256, the "STA $C081,X"
must be at $DF55 instead of $FF55. 1In other words, at least part
of the GETSLOT overhead must be in page $DF, even though the top
overhead is at the top of page $FF. In a 27256, the "STA $C081,Xx"
must be at S$SDF55 of the even bank. This is a bit of a nuisance,
although it is not an insurmountable problem. Unless all of your
quikLoaders are full of 27128s and 27256s, the easiest thing is
not to use these big chips in socket 0. Just use a 2764 there.
If you really need a 27128 or 27256 there, you will have to break
your data blocks in page $DF.

The second thing you need to be aware of with 27128s and
27256s is the effects of the USR flip-flop on the quikLoader.
When USR is high, all but 256 bytes of a 27128 or a bank of a ~
27256 can be addressed at $C100-$FFFF. The $C000-SCFFF area of
the chip is unavailable in this mode. When USR is low, addresses
in the $E000-$FFFF range access the bottom half of the 27128 or
27256 (the $C000-$DFFF area). This means that USR bank switches
the $E000-$FFFF addressing range and that the bottom 256 bytes of
the big chips is accessable at $E000-$EOFF when USR is low.

The QLOS katalog routine does not take advantage of the
USR bank switching to access the bottom 256 bytes when loading A,
B, or 1 files or reading katalog records. Therefore, A, B, and I
files and katalog records must reside in the $C100-$FFFF area of
27128s and 27256 odd banks. Primary routines can easily access
the bottom 256 bytes of the big chips via customized bank
switching schemes, or via chip 0 move routines. 1In a call to chip
0, the carry flag is shifted to the USR flip-flop for the data
transfer. This has no effect with the smaller chips, but it means
that primary routines must specify USR low (carry clear) or USR
high (carry set) when calling chip 0 routines. For example, to
transfer the bottom half of a 27128 or 27256 to RAM, make source
$SE000, length $2000, clear the carry flag and call MOVEBLK (Y=0).

NOTE:

Primary routines are always entered with USR hi h

t and return f
chip 0 routines is always with USR high. Also zoéice e
that calls to chip 0 are made with USR low.

16

The Chip 0 Subroutines

There is a group of subroutines available on chip 0 of the
highest priority quikLoader for use by primary routines on other
chips. These routines can be called from any chip on any
quikLoader by following some simple programming steps. The
presence of these routines greatly reduces the amount of code
necessary in primary routines.

The chip 0 subroutines are called via the bank switching
"STA $C081,X" at SFFEC with the desired subroutine identified by
the Y-register value. A table of these routines, and further
information, are available from us at no charge.

NOTE - LOADFP, RUNFP, LOADINT, and RUNINT all move DOS to RAM and
initialize it as part of BASIC initialization. Running and loading
of Applesoft and Integer programs without DOS is not supported by
QLOS.

High RAM Control

Primary routines are first entered from QLOS with high RAM
(the 16K RAM card) enabled for writing and disabled for reading.
High RAM will stay configured this way unless the primary routine
changes the configuration. The primary routine can thus store
data to high RAM at any time, and MOVEBLK calls to chip 0 can be
used to transfer data to high RAM.

High RAM should not be configured for reading while the
quikLoader is enabled. In other words, don't do a "LDA $C080" or
gimilar command from a primary routine. If you do enable high RAM
for reading from a primary routine in the Apple][or][Plus, the
quikLoader will compete with the 16K RAM card for control of the
data bus. If you enable high RAM from a primary routine in an
Apple //e, high RAM will still be disabled for reading as long as
the quikLoader is enabled. This is because high RAM is disabled
by the INHIBIT' line in the Apple //e.

The MOVEBLK, DOJSR, GOMRBRD, and MRBRDRST chip 0
subroutines respond to a special high RAM control byte. Before
executing any of these routines a "STA $COXX" (stored at
$111-$113) is executed. Primary routines control this instruction
by storing a value at $112. This byte is normally set to $81, and
it will remain at $81 unless a primary routine changes it. This
results in execution of "STA $C081" (disable high RAM read, leave
write enable as is). You can change this byte to confiqure the
high RAM for the chip 0 subroutine. For example, place $83 at
$112 and call DOJSR to perform a high RAM subroutine. After
MOVEBLK and DOJSR, high RAM is disabled for reading via a "STA
$C081" before return to the primary routine. The $112 control of
high RAM bank 2 is as follows:

$80 read on, write off.
$81 read off, write as is.
$82 read off, write off.
$83 read on, write as is.

17

Location $112 can be used to do the 16K RAM card reset via
the MRBRDRST routine in an Apple][or][Plus. It cannot be used
to do the high RAM reset in the Apple //e. This is because the
"JMP (SFFFC)" from a page 1 memory address disables high RAM in
the Apple //e.

The MOVEINT, RUNINT, and LOADINT routines assume that high
RAM is confiqured for writing as it is when QLOS first passes
control to the primary routine. Primary routines which disable
high RAM writing must reenable it before calling these routines.
When program flow goes to high RAM after RUNINT or LOADINT, high
RAM will be disabled for writing.

Apple //e INTCXROM and SLOTC3ROM Soft Switches

The quikLoader addressing range overlaps the 1/0 SELECT'
($C100-$C7FF) and 1/0 STROBE' ($CB00-$CFFF) addressing ranges.
1/0 SELECT' must therefore be deactivated while the 6502 is
addressing the $C100-$C7FF range of the quikLoader. This will
also eliminate 1/0 STROBE' conflicts because slot 1-7 peripheral
card response to I/0O STROBE' is initiated by I/0 SELECT'.

1/0 SELECT' in Apple]l[s and][Pluses is automatically
inhibited by the USER 1' line of the Apple when the quikLoader is
enabled and its USR flip-flop is high. 1/0 SELECT' in the Apple
//e must be inhibited by program control of the SLOTC3ROM and
INTCXROM soft switches. Primary programs are always entered with
these switches at INTERNAL, directly inhibiting I/0 SELECT' and
1/0 STROBE' so the quikLoader can respond to $C100-$CFFF
addressing while inhibiting motherboard response via the INHIBIT'
line.

GOMRBRD, LOADFP, RUNFP, LOADINT, and RUNINT all restore
the SLOTC3ROM and INTCXROM soft switches before entry to
motherboard. INTC3ROM is set to SLOT response, and SLOTC3ROM is
set to SLOT or INTERNAL depending on the presence of absence of an
auxiliary RAM card.

Running Programs Resident in the quikLoader

The operational philosophy of The quikLoader and QLOS is
to transfer programs to RAM for execution. However, programs can
be run while they reside in the quikLoader. There are some
limitations on this capability, though.

Resident programs can exercise motherboard 1/0 features
controlled by the $C000-$CO7F address range without limitation.
Slot I/0 control via DEVICE SELECT' ($C080-SCOFF) can also be
performed as long as it doesn't enable a device which will compete
with the quikLoader for control of the data bus. Peripheral card
ROM programs in the 1/0 SELECT' range ($C100-$C7FF) can be called
while quikLoader is enabled with the USR flip-flop low. This
means you could activate a printer driver as long as it doesn't
utilize the I/0 STROBE' gated expansion ROM. The quikLoader has
no provision for disabling response to the $C800-SCFFF range so
resident programs can not activate 1/0 peripherals which respond
to the 1/0 STROBE'.

A second problem with resident programs is that they have
restricted access to motherboard monitor routines. You can

execute motherboard subroutines in the $C100-$FFFF range via the
DOJSR call to chip 0, but this becomes unwieldy if you need to

18

make many calls. There are no limitations on calling motherboard
subroutines in the $0000-$BFFF range.

QLOS Memory Usage

QLOS uses a certain amount of RAM, even though it runs in
ROM. Like all programs, it requires pointers, counters, temporary
storage, etc. Additionally, certain QLOS routines must be run
from RAM. These routines are transferred from the quikLoader to
RAM for execution.

The QLOS RAM routines run in page 1 and, in the case of
the katalog routine, page 2. This memory area was chosen because
it doesn't contain data critical to most programs. The idea here
is to perform QLOS functions with a minimal chance of clobbering
user data. For example you can do a B-reset to initialize DOS in
the Apple and very few memory locations outside of the DOS area
will be modified.

Commercial Developement of quikLoader Programs

It is quite easy for software publishers to publish their
programs on quikLoader EPROM in addition to diskettes. SCRG
encourages the publishing of such products and is anxious to
consult with any persons or companies interested in doing so.
SCRG is also willing to become a distributer of programs on EPROM
or ROM for those companies hesitant to become involved with EPROM
programming and adaptation to QLOS formats. It is SCRG's
intention to keep all quikLoader puchasers advised of those
programs that are available in EPROM.

The quikLoader is especially well suited to utilities,
business, word processing, spreadsheet, and data base management
applications and programs that generally put the Apple to work.
Pesple who work their Apple are very appreciative of the concept
of instant and convenient access to applications.

Some programs are fairly massive and possibly
inappropriate for quikLoader implementation. Programs which take
up 300K bytes would have to be very valuable to a user to justify
the cost in EPROM and quikLoader space. Of course, a valuable
program coupled with quikLoader convenience can be a very
markatable product in spite of substantial production cost.

Adapting a commerical program to quikLoader involves
writing primary routines to handle the application and conversion
of disk access to quikLoader access when appropriate. It may be
desireble to access the quikLoader occasionally to defeat
unauthorized copying via NMI based RAM copying cards. This can be
done with quikLoader without inconveniencing the user since access
to quikLoader is so fast.

Published programs should normally have a power up routine
as part of the n-reset routine. This will allow the user to put
your chip in socket 6 and have the Apple power up in your
application. Your documentation should inform the purchaser
whether or not the chip is socket 6 compatible or not. This can
be done by marking the chip "C6 OK". Also, if your chip contains
the GETSLOT overhead, mark it "CO OK".

Any company interested is making their programs available on
quikLoader compatible EPROMS are encouraged to contact us.

10

Expunging DOS from Disks

owners of quikLoader do not normally need to boot DOS 3.3
from a disk. Therefore, with quikLoader installed in your Apple,
there is no reason to have DOS resident on all of your disks. This
means you can remove the bootable DOS image from most of your disks
and gain an additional 32 sectors per disk for data storage. You
only need to keep DOS on a few disks for safekeeping in case the
need arises to boot DOS from a disk.

Oon the PROGRAMMERS AID disk is a utility program which will
expunge the DOS image from disks. (Program name is EXPUNGE). It
does not actually overwrite DOS, but only frees tracks 1 and 2 in
the VTOC (Volume Table Of Contents at track $11, sector $00). It
does overwrite track $00, sector $00 with a short program to print a
reminder that DOS has been expunged if you attempt to boot the disk.
Since tracks 1 and 2 are free in the VTOC, DOS will eventually
overwrite the tracks if you store enough data to the disk.

You should be cautious of a couple of pitfalls that you
might encounter when expunging DOS from your disks. First, many
commercial programs contain a modified version of DOS and won't run
with the standard DOS 3.3. Expunging the modified DOS from a disk
like this could cause the disk to become irretrievably clobbered.

It is therefore recommended that you only expunge DOS from disks you
have initialized yourself or from backups of commercial programs.

Certainly you should never expunge DOS from disks which must be
booted to bring up the resident application.

The second pitfall in expunging DOS is when you attempt to
expunge DOS from a disk that doesn't contain DOS. When you free
tracks 1 and 2 on a disk like this, you may well be enabling DOS to
overwrite important data. In other words, don't run an expunge
program more than once on a disk, and don't attempt to expunge DOS
from a disk that never had DOS on it (e.g. disks formatted by
spreadsheet programs or word processors). Southern California
Research Group cannot accept responsibility of loss of data that
might occur when using this program.

To operate the EXPUNGE program, just BRUN the program and do
what the screen prompts say. This program will warn you if any
sector on tracks 1 or 2 is free or if track $00, sector $00 contains
a "not bootable" message. If this is the case, the DOS image is
probably not present and you should probably not allow EXPUNGE to
free tracks 1 and 2.

20

